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Defining Computational Social Science

What exactly is “computational social science”?

We define computational social science as a field of study which uses computational methods
to study social phenomena. We also discuss the history of the field and some of the challenges
it faces including access to data and institutional structures.

• Lazer et al. (2009): Authored by several prominent names in the social sciences, this
paper presents a vision for computational social science as a field of study and some of
the challenges facing the field. [link]

• “Introduction” (2018): Introduction from probably the best textbook on computational
social science out there. [link]

• King, Pan, and Roberts (2013): Example of an excellent computational social science
paper that uses data to explain a social process. [link]
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Prediction and Explanation

On computational social science’s epistemological perspectives.

A continuous tension we see is how different stakeholders view the value of data. Some may
be interested in models which give us insight into future events, while other may be interested
in models which help us understand the underlying mechanisms of a process. In what ways
do prediction and explaination differ? In what cases might we wish to use each approach?

• Wallach (2018): Perspective on the differences between machine learning and computa-
tional social science and why it matters. [link]

• “Observing Behavior” (2018): Discusses characteristics of big data and three “research
strategies” for working with it: observations, forecasting, and quasi-experiments. [link]

• Hofman et al. (2021): Perspective on the differences between explanation and prediction
and possible ways to integreate the two approaches in computational social science. [link]

Simulations and Agent-based Models (ABMs)

How can we use computer simulations to study social phenomena from the “buttom up”?

We discuss the role of simulations and when they may be useful in the development and
explanation of theories or in forecasting.

• Conte and Paolucci (2014): Proposes an interdisciplinary approach that combines ABM
and CSS for advancing the computational study of social phenomena. [link]

• Smirnov, Oprea, and Strohmaier (2023): A paper which integrates computational anal-
ysis with an agent-based model to demonstrate the potential impacts of its findings.
[link]

Ethics and Best Practices

What are the pitfalls and potential ethical issues in computational social science research?

We discuss such challenges for computational social science in practice as reidentification,
potential effects on privacy, and how more data alone does not solve study design problems.

• “Ethics” (2018): Practical examples and advice for ethical approaches to computational
social sceince research. [link]

• Charlotte Jee (2019): A short article about how easy it is to deanonymize data. [link]
• Zook et al. (2017): Suggestions to practitioners for how to approach and think about

ethical issues when working with big data. [link]
• Lazer et al. (2014): A classic example of “big data hubris”, where one might be tempted

to ignore foundational issues just become they have access to a lot of data. [link]
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Text as Data

Methods for working with text data.

A lot of social data is encoded within unstructured text. This module is more practical
than theoretical and focuses on strategies to extract data from text using natural language
processing and modern, vector-based approaches.

• DiMaggio (2015): Discusses the differences in how social scientists and computer scien-
tists approach textual data and offers suggestions that may help bridge the gap. [link]

• Jensen et al. (2012): Applies textual anlysis to the Congressional Record and compares it
to Google Books to deterine the relationship of polarization with “elite discourse”. [link]

Experiments and Causal Inference

How can we answer cause-and-effect questions using computational social science?

Experiments allow the researcher to manipulate independent variables and observe the effect on
dependent variables. However, experiments are not always possible. Causal inference provides
a framework to answer causal questions even when experiments are not possible.

• “Running Experiments” (2018): How can we answer cause-and-effect questions using
computational social science? Salganik discusses ways that digital media can facilitate
experiments and how causal experiment design can be used on existing data. [link]

• Grimmer (2015): Grimmer argues that approaches from both computer science and the
social sciences are needed to use big data toward solving large problems. In particular,
this paper emphasizes that description, while underappreciated, is still an important part
of the scientific process. [link]

• Chandrasekharan et al. (2017): Applies matching to a dataset of Reddit activity to
evaluate the effectiveness of Reddit’s quarantine policy. [link]

Network Analysis

Much social data is produced in the context of networks of relationships. This section intro-
duces the basic concepts of network analysis, and provides a few examples of how it is used in
the social sciences.

• Dodds, Muhamad, and Watts (2003): Uses email to replicate the “small-world” experi-
ment of Milgram (1967). [link]

• Barberá et al. (2015): Uses Twitter data to study the influence of “peripheral” partici-
pants on the spread of social movement, finding that despite being less active, such users
can be just as important as “core” users. [link]
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• Bail et al. (2018): Do people tend to become less polarized when exposed to opposing
views? This study paid active Twitter users to follow a bot which reposted opposing
viewpoints. It finds that exposure to opposing views does not reduce polarization, and
in fact can increase it. [link]

Crowds and Communities

A lot of social data is not produced in isolation, but rather in the context of communities with
their own norms and practices. We discuss how to think about communities and crowds, and
how to study them.

• “Creating Mass Collaboration” (2018): Categorizes three types of collaborative processes:
human computation, open call, and distributed data collection. [link]

• Shaw and Hill (2014): A study on participation inequalities in online peer-production
communities applying a political theory from 1911. [link]

• Muchnik, Aral, and Taylor (2013): A sort of social process audit on a news aggregation
website, finding an asymmetric effect where users self-correct negative scores, but do not
do the same on positive scores. [link]

Wrapping Up

We synthesize the main themes of the course and discuss the future of computational commu-
nication research.

• van Atteveldt and Peng (2018): An overview of the ways that computational techniques
are changing communication research, with an emphasis on many of the themes and
challenges discussed throughout this course. [link]

• Olteanu et al. (2019): An overview of many of the biases that can be introduced by
social data. [link]
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